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Abstract. A lattice-gas model is suggested for describing the ordering phenomena in alkali-
metal fullerides of face-centred-cubic structure assuming that the electric charge of alkali ions
residing in either octahedral or tetrahedral sites is completely screened by the first-neighbour
C60 molecules. This approximation allows us to derive an effective ion–ion interaction. The
van der Waals interaction between the ion and C60 molecule is characterized by introducing
an additional site energy at the tetrahedral sites. This model is investigated by using a three-
sublattice mean-field approximation and a simple cluster-variation method. The analysis shows
a large variety of phase diagrams as the site energy parameter is changed.

1. Introduction

Since the discovery of superconductivity in several alkali-metal fullerides [1–3] a large
variety of AxC60 intercalation compounds have been prepared and investigated (for recent
reviews see the papers [4, 5]). In the face-centred-cubic (FCC) structure of pristine C60

the molecules are bonded via van der Waals interaction. In this structure the tetrahedral
and octahedral interstitial spaces are sufficiently large to accommodate alkali atoms without
significant distortion of the lattice.

Because of the charge transfer the electrostatic energy plays an important role in
the formation of different ordered structures, as well as in the distortion of the host
lattice for large alkali concentration (x > 3). Fleming et al [6] have determined the
electrostatic energies for RbxC60 compounds assuming point charges for the Rb+ ions, and
the contribution of the Cx−

60 ion is expressed as the minimum Coulomb repulsion ofx point
charges on a sphere of radiusR, with R taken to be the C60 nucleon radius of 3.5̊A. In
the calculation of electrostatic energies Rabeet al [7] have assumed a uniformly charged
spherical shell with the same radius for the Cx−

60 ion.
In the present work we introduce a simple lattice-gas model to study the ordering

phenomena in alkali fullerides. In this model the interstitial sites may be empty or occupied
by one type of alkali ion. In agreement with the large size of fullerenes, here we assume
that an A+ alkali ion is completely screened by uniformly distributing its transferred charge
on the first-neighbour C60 molecules. For example, the alkali ion residing at a tetrahedral
(octahedral) site is surrounded by four (six) C60 molecules with charges of−e/4 (−e/6). In
other words, each intercalated alkali atom transfers charges to its neighbouring C60 molecules
independently of the position of the remaining A+. This simplification makes the derivation
of an effective pair interaction possible, which is evidently a short-range one. The difference
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between the sizes of tetrahedral and octahedral voids is considered by introducing extra site
energy related to the van der Waals interactions. This site energy parameter depends on
the radius of the intercalated particle; consequently it is characteristic of the type of alkali
atom. In the knowledge of the effective interactions (and site energy) characterized by a
few parameters we are able to study the ordering within the framework of the lattice-gas
(Ising) formalism. Using a simple mean-field analysis and cluster-variation method we have
evaluated a series of phase diagrams by varying the site energy (ionic radius) parameter.

The above formalism can describe the ordered structures observed in alkali fullerides
with FCC structure. Namely, in pristine C60 all of the interstitial sites are empty, whereas
in the superconducting compounds with nominal composition A3C60 both the octahedral
and tetrahedral sites are occupied by alkali ions [8, 1, 2, 3]. Only the octahedral sites are
occupied in AC60, forming NaCl structure for A= Rb and Cs [9]. Filling of the tetrahedral
sites results in the CaF2 structure observed by Rosseinskyet al [10] in the NaxC60 system.
According to our analysis the above phases are found to be stable if one takes the total
energy of the charged C60 molecule into consideration as discussed later on.

The early experimental investigations of the alkali intercalated fullerides are summarized
by Zhu et al [11] in a provisional phase diagram. Recently, Poirier and Weaver [12] and
Winkler and Kuzmany [13] proposed a phase diagram for the KxC60 system showing a
eutectoid transformation from the homogeneous KC60 state to the composition of C60 and
K3C60 phases [12]. Our calculation confirms the existence of such a phase diagram for a
narrow range of parameters.

The above model explains adequately the formation of different intercalated structures.
Our purpose is not to argue that the present description gives the correct lattice-gas model
for a given AxC60 system but rather to emphasize some general features highlighted by this
approach because the model is adaptable for other metal–C60 systems. By this means the
present model provides a framework for classifying these systems. In this paper we restrict
ourselves to the systems corresponding to AxC60 with rigid FCC structure. In the present
description the phenomena related to the orientational ordering are neglected. Both the
interaction between two C60 molecules and the electronic structure are simplified; therefore
the present model cannot describe the chain formation discovered very recently by Chauvet
et al [14].

2. The model

The electronic structure calculations for alkali fullerides have indicated that the higher-
lying s bands of the metal are unoccupied and the electrons fill the empty t1u states of the
C60 molecule, so the alkali atoms are ionized and their valence electrons are accepted by
the fullerene molecule forming a negative ion [15, 16]. In such a situation the Coulomb
interaction makes the most important contribution to the energy of the system. Several
authors have already studied the effect of the Madelung energy on the charge-transfer solids
[17], binary [18] and pseudobinary alloys [19] and intercalated graphite compounds [20].

Statistical physics is able to give an adequate description of the Ising systems with
short-range interaction but many problems arise in handling the infinite-range Coulomb
interaction. An effective way of eliminating this problem is to construct a renormalized
short-range interaction. In our treatment a series of pair interactions that converges well
is derived in order to avoid the difficulties arising from the long-range-order interactions
among the ions.

Calculations taking into account the polarizability of the fullerene molecules in the host
lattice have suggested that the energy of two charged C60 molecules in the intercalated solid
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can be well described as the interaction between two point charges in a dielectric medium
characterized byε [21].

The charge of the alkali atoms has been taken to bee and the charge of the C60 is
related to the occupation of the nearest-neighbour interstitial sites. The charge distribution
may easily be described in the lattice-gas formalism introducing the site occupation variables
ηi which take the value 1 if theith interstitial site is occupied and take the value 0 if this
site is empty. Within this formalism the charge at sitei is evidentlyqi = eηi and the charge
transferred to theαth C60 molecule can be written as

Qα = −e
∑
j∈Nα

cjηj (1)

whereNα means the set of first-neighbour tetrahedral and octahedral interstitial sites around
the αth C60 molecule andcj denotes the portion of charge transferred from the alkali atom
residing at thej th site to each nearest-neighbour C60 molecule. More precisely,cj = 1/6
for octahedral and 1/4 for tetrahedral sites. Such a choice provides for each alkali ion to be
completely neutralized by its first-neighbour C60 molecules. The model assumes that the
transferred charge accompanies the alkali ions when hopping from site to site. This charge
distribution evidently satisfies the requirement of the neutrality of the crystal.

The energy of the system can be given in the following form:

E = 1

2ε

∑
i 6=j

qiqj

rij

+ 1

2ε

∑
α 6=β

QαQβ

rαβ

+
∑
i,α

qiQα

εriα

+
∑

α

Eint (Qα) (2)

whereEint (Qα) is the intramolecular energy, and the Greek and Latin indices run over the
C60 sites and interstitial sites of the FCC lattice respectively. Substituting in the charges
from (1), the Coulomb energy can be expressed as

EC = e2

2ε

∑
i 6=j

1

rij

ηiηj − e2

ε

∑
i,α

∑
j∈Nα

cj

riα

ηiηj + e2

2ε

∑
α 6=β

∑
j∈Nα

∑
k∈Nβ

cj ck

rαβ

ηjηk . (3)

On exchanging the order of the summations, the energy can be separated into the
contributions of on-site and pair interactions, namely

EC =
∑

i

ε′
iηi + 1

2

∑
ij

V ′
ij ηiηj (4)

where

ε′
i = e2

2ε

∑
(α,β)∈Ni,α 6=β

c2
i

rαβ

− e2

ε

∑
α∈Ni

cj

riα

(5)

V ′
ij = e2

εrij

+ e2

ε

∑
α∈Ni

∑
β∈Nj

cicj
(1 − δαβ)

rαβ

− e2

ε

∑
α∈Nj

cj

riα

− e2

ε

∑
α∈Ni

ci

rjα

(6)

andNi denotes the set of first-neighbour C60 positions around interstitial sitei.
The magnitude ofV ′

ij decreases rapidly with the distance between sitesi and j .
Equation (6) expresses the Coulomb interaction between two clusters formed by theith
and j th alkali ions as the central site and their nearest-neighbour C60 molecules. Since
the clusters are neutral and the systems have cubic symmetry, the monopole, dipole and
quadrupole terms vanish. So there are only higher-order multipole interactions between two
sites.

In order to evaluate the intramolecular energy a series of semi-empirical unrestricted
Hartree–Fock (UHF) calculations have been performed using the parametrization according



10962 L Udvardi and G Szab´o

to the modified neglect of differential overlap (MNDO) approximation [22] for up to a
sixfold ionized single Cx−

60 molecule where the characteristic bond lengths of the system
were kept constant:r1 = 1.400 Å and r2 = 1.440 Å. The total energy of the charged
molecule as a function of the number of excess electrons can be fitted quite well with a
parabola given by

Etot = A + Bx + Cx2 (7)

where x is the number of extra electrons on the molecule andA = −7635.02 eV,
B = −4.71926 eV, andC = 1.6262 eV. Such an almost perfect parabolic behaviour
does not hold for other fullerenes with lower symmetry.

The quadratic energy dependence of the isolated molecule on the excess charges allows
us to introduce an effective radius for the C60 molecule having a value ofR = 0.312a where
the lattice constanta is given by experiment [8]. From previous calculations [21, 23, 24]
R ≈ 4.8 Å can be obtained. The differences between the present and the cited calculations
are due to the different choices of the equilibrium bond lengths. Since the C60 molecule
is embedded in the crystal lattice the energy of the single molecule is modified by the
surrounding media. Supposing a dielectric screening mechanism one can apply the Onsager–
Kirkwood theory of the electrostatic solvation [25] for estimating the effect of the lattice:

Eint = E0 − 1

2

((
1 − 1

ε

)
Q2

r0
+ 2

ε − 1

2ε + 1

µ2

r3
0

+ · · ·
)

(8)

wherer0 is the radius of the cavity into which the molecule is embedded. Since the dipole
momentµ of the charged C60 is zero, choosing the effective radius as the radius of the
cavity, the intramolecular energy can be written as

Eint = A + Bx + e2x2

2εR
. (9)

The first term gives a constant contribution to the total energy and the linear term shifts
the on-site energies. Both effects may be transformed out by rescaling the energy. The
quadratic term gives aV ′′

ij -contribution to the pair interaction between those alkali ions
which transfer some charge to the same C60 molecule, i.e.,

V ′′
ij = 2

ε

∑
α

cicjC (10)

whereα ∈ Ni ∩ Nj . Obviously, this contribution vanishes whenrij exceeds a threshold
value. Furthermore, the energy of Cx−

60 increases the site energies too with

ε′′
i = 1

ε

∑
α∈Ni

c2
i C. (11)

The contribution of the van der Waals interaction to the site energy is distinct for the
tetrahedral and octahedral sites and depends on the size of the alkali ion. To characterize
this contribution we introduce an additional site energy, i.e.,

εi =
{

εo for octahedral sites

εt + δEt for tetrahedral sites
(12)

whereδEt is considered as the difference between the two types of site and is expected to
be positive for large alkali ions. In this expression the sum ofε′

i andε′′
i is indicated byεo

andεt for the octahedral and tetrahedral sites, respectively. The numerical calculations give
εo = −1.178 17e2/εa and εt = −1.37843e2/εa (wheree2/a ≈ 1 eV), i.e. the tetrahedral
sites are primarily occupied forδEt = 0.
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We are now in a position to express the total energy of the system within the lattice-gas
formalism. The following Hamiltonian defines the energy for any configuration of alkali
ions described by the variablesηi :

H =
∑

i

εiηi + 1

2

∑
ij

Vij ηiηj (13)

whereVij = V ′
ij + V ′′

ij , andεi , V ′
ij , V ′′

ij are defined above by equations (12), (6) and (10).

-0.5

-0.3

-0.1

0.1

0.3

0 0.5 1 1.5 2

V
ij/

(e
2 /ε

a)

r   / aij

Figure 1. The effective pair interaction as a function of ion–ion distance. Open diamonds
represent the pure coulombic interaction (V ′

ij ); closed diamonds refer to the full interaction (Vij )
including the energy of the charged C60 molecule.

The effective pair interactionsVij versusrij /a are shown in figure 1.Vij has different
values for the same distances; in other words, the pair interaction depends on the orientation
of the pair for some values ofrij . Figure 1 demonstrates clearly thatVij becomes
extremely weak ifrij > a . The attractive contributions of the effective pair interaction
(for a/2 < rij 6 a) indicate the stability of alkali-intercalated fullerides at large alkali
concentrations.

As a comparisonV ′
ij is also plotted in figure 1. The striking difference betweenVij and

V ′
ij indicates the important role of the electronic energy of Cx−

60 ions; this will be investigated
in detail in the subsequent sections.

3. Ground states

The electrostatic energies of some ordered structures have already been investigated [6, 7].
Now we concentrate on analysing such FCC structures which may be described by
introducing three sublattices as demonstrated in figure 2. The sites of each sublattice form
a FCC structure equivalent to the cage lattice. For later convenience the sublattices are
labelled 0 for octahedral and 1 or 2 for tetrahedral sites. In the three-sublattice formalism
the states are characterized by a vector consisting of sublattice occupations. For example, the
state(σ0, σ1, σ2) denotes an alkali distribution where the sites of sublatticeν are occupied
with a probabilityσν . In general 06 σν 6 1; however,σν = 0 or 1 for ordered structures.
These ordered states are well known in crystallography. For example, the states (1, 0, 0),
(0, 1, 1), and (1, 1, 1) are equivalent to the NaCl, CaF2, and BiF3 structures.
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O

T1 T2

Figure 2. The arrangement of octahedral (medium-size spheres) and the two tetrahedral (dark
and light small spheres) interstitial sites in an FCC lattice formed by C60 molecules (large
spheres). The triangle represents the basic cluster of our CVM approximation.

One can easily see that according to the present model the C60 molecules are uniformly
charged for the ordered states defined above. Consequently, the electrostatic energies are
equivalent to the Madelung energies determined previously [6, 7]. In agreement with
expectation the energies of ordered states are equivalent to those predicted by Rabeet al
[7] when choosingR = 3.5 Å. In the above model, however, we have chosen largerR as
detailed in the previous section.

In order to study the stability of the ground states we introduce the chemical potential
µ which controls the alkali content (x) in the system. The stable state as a function ofµ is
determined by the minimum of the Gibbs potential per C60 defined as

G0 = H0 − µx (14)

where the index 0 refers to zero temperature andH0 denotes the total energy per C60. A
simple numerical calculation gives the stable state as a function ofµ andδEt . The results
are summarized in figure 3. This map shows that the alkali content increases with the
chemical potential for a fixedδEt . The present model suggests three stable ground states
((0, 0, 0), (1, 0, 0), and (1, 1, 1)) ifδEt > 1.0106e2/εa. There is a region ofδEt when the
(0, 0, 0) state transforms directly to (1, 1, 1) for increasingµ as is suggested theoretically
by Fleminget al [6]. If δEt < 0.1406e2/εa, then the (0, 1, 1) state is stable. This behaviour
is a consequence of the fact thatδEt does not give an energy contribution to the states (0,
0, 0) and (1, 0, 0); however, it shifts the energy of the states (0, 1, 1) and (1, 1, 1) by the
same value.

We have evaluated the energies of several ordered states related to a different sublattice
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Figure 3. Ground states of AxC60 as a function of chemical potentialµ andδEt .

division of the tetrahedral sites. In order to determine the ground states of the systems
both the octahedral and tetrahedral (FCC) lattices have been decomposed into four simple
cubic lattices and the energies of all the possible ordered structures on the 12 sublattices
have been calculated. In comparison with previous results we obtained higher energies for
all the states distinguishable from the former ones. This investigation confirms the above
sublattice division thereby providing a framework for later analysis.

4. Mean-field approximation

In this section the thermodynamic properties of the lattice-gas model defined by the
Hamiltonian (13) are investigated by using a three-sublattice mean-field approximation. It
is assumed that the interstitial points are occupied by an alkali ion with the same probability
σν within the sublatticeν = 0, 1, 2.

By means of the mean-field approximation the energy per C60 molecule may easily be
expressed in terms of the variablesσν as

H =
∑

ν

ενσν + 1

2

∑
ν,τ

Jντ σνστ (15)

where the coupling constantsJντ contain all the interactions between an alkali ion in
sublatticeν and those ions residing in sublatticeτ , i.e.,

Jντ =
∑
j∈Sν

Vij (i ∈ Sτ ) (16)

whereSν denotes the set of sites belonging to sublatticeν. The tensor of coupling constants
is symmetric—that is,Jντ = Jτν . Furthermore,J01 = J02 and J11 = J22 because of
the equivalence of the tetrahedral sublattices. Consequently, we have only four different
coupling constants characteristic of the model in the mean-field approximation. Their values
may be determined by straightforward numerical calculation which gives

J00 = −1.428 79
e2

εa
J01 = −0.290 00

e2

εa

J11 = −1.603 86
e2

εa
J12 = −0.865 60

e2

εa

(17)
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if R/a = 0.312. Notice that all theJνη are negative, i.e., the attractive forces dominate the
short-range repulsion (see figure 1).

The thermodynamic properties of the system are determined by the minimization of the
Gibbs potential

G = H − T S − µ
∑

ν

σν (18)

with respect toσν for fixed temperatureT and chemical potentialµ. In the above expression
the configurational entropy per C60 is given as

S = −kB

∑
ν

[σν logσν + (1 − σν) log(1 − σν)] (19)

wherekB is the Boltzmann constant.

5. The cluster-variation method

The cluster-variation methods (CVM) are successfully used for deriving phase diagrams
with sufficient accuracy [27]. Two basic difficulties emerge when adapting this technique
to the present lattice-gas model. On the one hand, the interstitial sites form a non-Bravais
lattice; on the other hand, instead of the usual first- (and second-) neighbour interaction(s)
there are a lot of parametersVij characteristic of the interaction between sitesi andj . Here
we suggest the application of a simple version of the CVM to increase the accuracy of the
three-sublattice mean-field approximation.

First we introduce a set of variablest (η0, η1, η2) to denote the probability of a
configuration(η0, η1, η2) on three neighbouring sites whereην refers to the occupation
of the site belonging to sublatticeν. The position of such a three-point cluster is indicated
by a triangle in figure 2. The probability of a configuration on a part of this triangle may be
easily expressed by the values oft . For example, the probabilities for pair and single-site
configurations are given as

p01(η0, η1) =
∑
η2

t (η0, η1, η2) s0(η0) =
∑
η1,η2

t (η0, η1, η2)

p02(η0, η2) =
∑
η1

t (η0, η1, η2) s1(η1) =
∑
η0,η2

t (η0, η1, η2)

p12(η1, η2) =
∑
η0

t (η0, η1, η2) s2(η2) =
∑
η0,η1

t (η0, η1, η2).

(20)

The values ofsν are directly related to the sublattice occupationsσν introduced previously,
namelysν(1) = σν andsν(0) = 1 − σν .

The contribution of the first- and second-neighbour interactions to the system energy is
expressed by the variablespντ (1, 1) and only the remaining terms are approximated on the
basis of mean-field theory. That is, now the energy per C60 molecule is given as

H(CV M) = 4V (1)[p01(1, 1) + p02(1, 1)] + 6V (2)p12(1, 1)

+ 1

2

∑
ν,τ

J ′
ντ sν(1)sτ (1) +

∑
ν

ενsν(1) (21)

whereV (1) = 0.274 59e2/εa andV (2) = −0.003 86e2/εa denotes the interactionsVij at the
shortest and second shortest distances, andJ ′

νη is equivalent toJνη defined by equation (16)
except that the coupling constants should be reduced by the contributions ofV (1) andV (2):

J ′
01 = J01 − 4V (1) J ′

12 = J12 − 6V (2). (22)
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Here we restrict ourselves to demonstrating how the entropy may be derived on the
analogy of a pair approximation developed by Bethe [28]. The non-Bravais lattice of
interstitial sites may be built up by repeating periodically the triangle of an octahedral
and two tetrahedral sites as prescribed by the primitive cell of the FCC structure. This
construction makes it clear that each triangle is surrounded by twelve triangles with the
same orientation. According to the pair approximation the entropy is expressed by the
probability of pair configurations [28, 29]. In the present situation the probability of a
configuration on a pair of triangles is approximated as a product oft (η0, η1, η2) variables.
The calculation leads to the following formula:

SCV M = −6kB

∑
η0,η1,η2

t (η0, η1, η2) log t (η0, η1, η2)

+ kB

∑
ν<τ

xνη

∑
ην ,ητ

pντ (ην, ητ ) logp01(ην, ητ ) + kB

∑
ν

yν

∑
ην

sν(ην) logsν(ην)

(23)

wherex01 = x02 = y1 = y2 = 2 andx12 = y0 = 1.
Substituting equations (21) and (23) into (18) one obtains the Gibbs potential as a

function of the variablest (η0, η1, η2). As is well known,G reaches its minimum at the
equilibrium values of these variables. In fact we have seven independent variables because
the eighth configuration probability is determined by the condition of normalization. The
numerical treatment is similar to those followed in mean-field approximation. The only
difference is that instead of the threeσν-variables we now have seven parameters with
respect to which we have to minimize the Gibbs potential.

All of the phase diagrams have been recalculated by using this technique. The
differences between the results of mean-field approximation and the CVM are not relevant,
as demonstrated in the subsequent section.

6. Results

The results of the numerical calculations are summarized in temperature–composition (T –x)
phase diagrams for different values ofδEt . The alkali concentration is related to sublattice
occupations (x = ∑

σν) determined directly by the numerical procedure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

k B
T

/(
e2 /ε

a)

X

(000) + (011)

(011) +
(111)

δEt=0

Figure 4. The phase diagram forδEt = 0 in the mean-field approximation.
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In agreement with the ground-state analysis, figure 4 illustrates that only the (0, 0,
0), (0, 1, 1), and (1, 1, 1) phases are stable at low temperatures forδEt = 0. For
intermediate compositions the system segregates into two phases as indicated in the figure.
It is emphasized that in the high-temperature phase the tetrahedral and octahedral sites are
occupied with different probabilities. More precisely, the tetrahedral sites are preferred
to the octahedral ones forδEt < 0.1402. For example, if the temperature is decreased
for a fixed concentrationx = 2 the present model suggests a continuous ordering process
observed for the CaF2-type superionic conductors [26].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

k B
T

/(
e2 /ε

a)

X

δEt=0.6

(000) + (111)

Figure 5. A comparison of phase diagrams suggested by mean-field approximation (the dashed
line) and the CVM (the solid line) forδEt = 0.6e2/εa.

Figure 5 shows the simplest phase diagram characteristic to the present model for
0.1402 < δEt/(e

2/a) < 1.0106. In this case the disordered state decomposes into high-
and low-concentration regions corresponding to the (0, 0, 0) and (1, 1, 1) states in the
zero-temperature limit.
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(100)

(000)
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Figure 6. The phase diagram forδEt = 1.1e2/εa determined by mean-field approximation (the
dashed line) and the CVM (the solid line).

As mentioned above the energy of both the (0, 1, 1) and (1, 1, 1) phases increases
with δEt ; meanwhile the energy of the phases (0, 0, 0) and (1, 0, 0) remains unchanged.
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As a result the (1, 0, 0) phase appears in the phase diagrams forδEt > 1.0106e2/εa as
demonstrated in figure 6. Notice that the CVM suggests lower transition temperatures in
comparison with mean-field results. In general we can say that the difference is only a few
per cent forR/a = 0.312; however, it becomes larger for smallerR when the short-range
interactions are more repulsive.
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Figure 7. Mean-field analysis of the lattice-gas model suggests a eutectoid phase transition for
δEt = e2/εa.

Slightly below the stability threshold value one can observe a eutectoid transition as
plotted in figure 7. This phase diagram is similar to those suggested by Poirier and
Weaver [12] and Winkler and Kuzmany [13] for the KxC60 system forx < 3. With x-
ray photoemission and Raman spectroscopy they observed a reversible transformation from
KC60 to a mixed phase of C60 and K3C60 at the eutectoid temperature (Teut = 150±10 ◦C).
For δEt = e2/εa the present approach predictskBTeut = 0.250e2/εa.

It is emphasized that in the above phase diagrams the two tetrahedral sublattices are
occupied with the same probability, implying the union of these sublattices. However, some
modification of the model parameters results in the appearance of the (0, 1, 0) and (1, 1, 0)
states. This is the situation when accepting the spherical-shell model suggested by Rabeet
al [7] with the radius of the C60 molecule (R = 3.5 Å). Unfortunately the rigorous analysis
of all of the possible diagrams as a function ofR and δEt goes beyond the scope of the
present paper.

7. Summary and conclusions

We have developed a lattice-gas model for investigating the formation of different alkali-
intercalated fullerides with FCC structure. In this (Ising-type) model the tetrahedral and
octahedral interstitial sites of the cage lattice are empty or singly occupied by one type of
alkali ion. It is assumed that the Coulomb interaction between two alkali ions is screened
out by distributing their s electrons uniformly on their nearest-neighbour C60 molecules.
This plausible assumption results in a short-range interaction which is very convenient for
the lattice-gas formalism. For ordered structures this model reproduces the electrostatic
energies found by previous authors [6, 7].

Besides the electrostatic energy the model takes into account the electronic energy of Cx−
60

ions as well as the van der Waals interaction between an alkali ion and a C60 molecule. A
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series of quantum chemical calculations show that the total energy of a charged C60 molecule
has a term proportional to the square of its charge. This non-linear contribution mediates
an interaction between those alkali ions which transfer electrons to the same C60 molecule.
This contribution is equivalent to the electrostatic energy of a charged spherical shell with
radius R. The site energy (δEt ) characteristic of the extra van der Waals interaction at
the smaller (tetrahedral) interstitial voids makes a distinction between the different types of
alkali atom. Without this term the tetrahedral sites are preferred in the system as observed
for A = Li and Na. This energy contribution increases with the size of the alkali atom and
the octahedral sites are primarily occupied whenδEt exceeds a threshold value.

The thermodynamic properties of this model are investigated by using a three-sublattice
mean-field approximation and the CVM. The general features are illustrated via a series of
phase diagrams. These diagrams illuminate the effect of the size of the alkali ion on the
ordering processes.

Choosing the dielectric constant to beε ≈ 4 [21] the maxima of the predicted ordering
temperatures agree qualitatively with those expected on the basis of recent experiments.
There are more reliable data on the phase separation temperature observed in the KxC60

system. The present model can describe such types of phase diagram (see figure 7) for a
very narrow range ofδEt in agreement with the fact that this feature has not been observed
for other fullerides [30]. When applying pressure in order to contract the lattice, the varying
model parameters can cause a sharp variation of the eutectic temperature.

The generalization of the present description for alkaline-earth (or other) metals is
straightforward. If the intercalated atoms havez valence electrons we should substitute a
new energy unit,(ze)2/εa, for e2/εa and find a suitableδEt expressed in this unit. Due
to using the enhanced energy unit the A2C60 composition can appear over a wider range of
δEt . At the same time the variation of the lattice constant modifies the ratioR/a and can
lead to some change in the phase diagrams.
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